Remenyte-Prescott, Rasa and Andrews, John (2009) An efficient real-time method of analysis for non-coherent fault trees. Quality and Reliability Engineering

نویسندگان

  • Rasa Remenyte-Prescott
  • John D. Andrews
چکیده

Fault tree analysis is commonly used to assess the reliability of potentially hazardous industrial systems. The type of logic is usually restricted to AND and OR gates which makes the fault tree structure coherent. In non-coherent structures not only components’ failures but also components’ working states contribute to the failure of the system. The qualitative and quantitative analyses of such fault trees can present additional difficulties when compared to the coherent versions. It is shown that the Binary Decision Diagram (BDD) method can overcome some of the difficulties in the analysis of non-coherent fault trees. This paper presents the conversion process of non-coherent fault trees to BDDs. A fault tree is converted to a BDD that represents the system structure function (SFBDD). A SFBDD can then be used to quantify the system failure parameters but is not suitable for the qualitative analysis. Established methods, such as the metaproducts BDD method, the zero-suppressed BDD (ZBDD) method and the labelled BDD (L-BDD) method, require an additional BDD that contains all prime implicant sets. The process using some of the methods can be time consuming and not very efficient. In addition, in real time applications the conversion process is less important and the requirement is to provide an efficient analysis. Recent uses of the BDD method are for real time system prognosis. In such situations as events happen, or failures occur the prediction of mission success is updated and used in the decision making process. Both qualitative and quantitative assessment are required for the decision making. Under these conditions fast processing and small storage requirements are essential. Fast processing is a feature of the BDD method. It would be advantageous if a single BDD structure could be used for both the qualitative and quantitative analyses. Therefore, a new method, the ternary decision diagram (TDD) method, is presented in this paper, where a fault tree is converted to a TDD that allows both qualitative and quantitative analyses and no additional BDDs are required. The efficiency of the four methods is compared using an example fault tree library.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient real-time method of analysis for non-coherent fault trees

Fault tree analysis is commonly used to assess the reliability of potentially hazardous industrial systems. The type of logic is usually restricted to AND and OR gates which makes the fault tree structure coherent. In non-coherent structures not only components’ failures but also components’ working states contribute to the failure of the system. The qualitative and quantitative analyses of suc...

متن کامل

An enhanced component connection method for conversion of fault trees to binary decision diagrams

Fault Tree Analysis (FTA) is widely applied to assess the failure probability of industrial systems. Many computer packages are available which are based on conventional Kinetic Tree Theory methods. When dealing with large (possibly non-coherent) fault trees, the limitations of the technique in terms of accuracy of the solutions and the efficiency of the processing time becomes apparent. Over r...

متن کامل

Analysis of Non-coherent Fault Trees Using Ternary Decision Diagrams

Risk and safety assessments performed on potentially hazardous industrial systems commonly utilise Fault Tree Analysis (FTA) to forecast the probability of system failure. The type of logic for the top event is usually limited to AND and OR gates which leads to a coherent fault tree structure. In non-coherent fault trees components’ working states as well as components’ failures contribute to t...

متن کامل

An efficient phased mission reliability analysis for autonomous vehicles

Autonomous systems are becoming more commonly used, especially in hazardous situations. Such systems are expected to make their own decisions about future actions when some capabilities degrade due to failures of their subsystems. Such decisions are made without human input, therefore they need to be well-informed in a short time when the situation is analysed and future consequences of the fai...

متن کامل

Mission Planning Analysis using Decision Diagrams

Many military and space operations are phased missions, which contain non-overlapping phases. One approach for assessing phased mission system reliability is to apply binary decision diagrams (BDD’s). While the BDD is an efficient structure for probability analysis, it cannot accurately represent all aspects of complex systems and processes as it assumes all phases follow binary logic. It is of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016